Vai al contenuto

Inizia con l'Accelerometro

Questa guida ti guiderà attraverso l’integrazione del plugin Capacitor Accelerometer nella tua applicazione.

Installa il plugin utilizzando npm:

Terminal window
npm install @capgo/capacitor-accelerometer
npx cap sync

Nessuna configurazione aggiuntiva richiesta. L’accelerometro è sempre disponibile.

Nessuna configurazione aggiuntiva richiesta. L’accelerometro è sempre disponibile.

Il plugin utilizza l’API DeviceMotion. Richiede HTTPS in produzione.

import { Accelerometer } from '@capgo/capacitor-accelerometer';
const startAccelerometer = async () => {
await Accelerometer.start({
interval: 100 // Intervallo di aggiornamento in millisecondi
});
console.log('Accelerometro avviato');
};
Accelerometer.addListener('accelerationChange', (data) => {
console.log('X:', data.x);
console.log('Y:', data.y);
console.log('Z:', data.z);
console.log('Timestamp:', data.timestamp);
});
const getCurrentAcceleration = async () => {
const reading = await Accelerometer.getCurrentAcceleration();
console.log('Accelerazione attuale:', reading);
};
const stopAccelerometer = async () => {
await Accelerometer.stop();
console.log('Accelerometro interrotto');
};

Ecco un esempio completo con rilevamento delle scosse:

import { Accelerometer } from '@capgo/capacitor-accelerometer';
class AccelerometerService {
private listener: any;
private lastX = 0;
private lastY = 0;
private lastZ = 0;
private shakeThreshold = 15;
async initialize() {
await Accelerometer.start({ interval: 100 });
this.listener = Accelerometer.addListener('accelerationChange', (data) => {
this.handleAcceleration(data);
});
}
handleAcceleration(data: any) {
// Calcola il delta
const deltaX = Math.abs(data.x - this.lastX);
const deltaY = Math.abs(data.y - this.lastY);
const deltaZ = Math.abs(data.z - this.lastZ);
// Controlla la scossa
if (deltaX > this.shakeThreshold ||
deltaY > this.shakeThreshold ||
deltaZ > this.shakeThreshold) {
this.onShake();
}
// Aggiorna gli ultimi valori
this.lastX = data.x;
this.lastY = data.y;
this.lastZ = data.z;
// Aggiorna l'interfaccia utente
this.updateDisplay(data);
}
onShake() {
console.log('Dispositivo scosso!');
// Attiva l'azione di scossa
}
updateDisplay(data: any) {
console.log(`X: ${data.x.toFixed(2)} m/s²`);
console.log(`Y: ${data.y.toFixed(2)} m/s²`);
console.log(`Z: ${data.z.toFixed(2)} m/s²`);
// Calcola la magnitudine
const magnitude = Math.sqrt(
data.x * data.x +
data.y * data.y +
data.z * data.z
);
console.log(`Magnitudine: ${magnitude.toFixed(2)} m/s²`);
}
async cleanup() {
if (this.listener) {
this.listener.remove();
}
await Accelerometer.stop();
}
}
// Utilizzo
const accelService = new AccelerometerService();
accelService.initialize();
// Pulizia al termine
// accelService.cleanup();
  • Asse X: Sinistra (-) a Destra (+)
  • Asse Y: Basso (-) ad Alto (+)
  • Asse Z: Dietro (-) a Davanti (+)
  • Il dispositivo a riposo mostra ~9,8 m/s² su un asse (gravità)
  • Il movimento del dispositivo mostra accelerazione oltre alla gravità
  • Misurato in metri al secondo al quadrato (m/s²)
  • Gravità = 9,8 m/s²
class ShakeDetector {
private lastUpdate = 0;
private lastX = 0;
private lastY = 0;
private lastZ = 0;
detectShake(x: number, y: number, z: number): boolean {
const currentTime = Date.now();
if (currentTime - this.lastUpdate > 100) {
const deltaX = Math.abs(x - this.lastX);
const deltaY = Math.abs(y - this.lastY);
const deltaZ = Math.abs(z - this.lastZ);
this.lastUpdate = currentTime;
this.lastX = x;
this.lastY = y;
this.lastZ = z;
return deltaX + deltaY + deltaZ > 15;
}
return false;
}
}
class TiltDetector {
getTiltAngles(x: number, y: number, z: number) {
const roll = Math.atan2(y, z) * (180 / Math.PI);
const pitch = Math.atan2(-x, Math.sqrt(y * y + z * z)) * (180 / Math.PI);
return { roll, pitch };
}
isDeviceFlat(z: number): boolean {
return Math.abs(z - 9.8) < 1.0;
}
isDeviceUpright(y: number): boolean {
return Math.abs(y - 9.8) < 2.0;
}
}
class StepCounter {
private steps = 0;
private lastMagnitude = 0;
private threshold = 11;
processAcceleration(x: number, y: number, z: number) {
const magnitude = Math.sqrt(x * x + y * y + z * z);
if (magnitude > this.threshold &&
this.lastMagnitude < this.threshold) {
this.steps++;
console.log('Passi:', this.steps);
}
this.lastMagnitude = magnitude;
}
}
  1. Scegli Intervalli Appropriati: Equilibra la reattività e la durata della batteria

    • Gaming: 16-50ms
    • Fitness: 100-200ms
    • Generale: 200-500ms
  2. Rimuovi i Listener: Pulisci sempre quando hai finito

  3. Filtra il Rumore: Usa medie mobili per dati più fluidi

  4. Considera la Batteria: Il polling ad alta frequenza scarica la batteria

  5. Testa su Dispositivi Reali: I simulatori non forniscono dati accurati

class AccelerometerDebouncer {
private timeout: any;
debounce(callback: Function, delay: number) {
return (...args: any[]) => {
clearTimeout(this.timeout);
this.timeout = setTimeout(() => callback(...args), delay);
};
}
}
class AccelerometerFilter {
private alpha = 0.8;
private filteredX = 0;
private filteredY = 0;
private filteredZ = 0;
filter(x: number, y: number, z: number) {
this.filteredX = this.alpha * x + (1 - this.alpha) * this.filteredX;
this.filteredY = this.alpha * y + (1 - this.alpha) * this.filteredY;
this.filteredZ = this.alpha * z + (1 - this.alpha) * this.filteredZ;
return {
x: this.filteredX,
y: this.filteredY,
z: this.filteredZ
};
}
}
  • Esplora il Riferimento API per la documentazione completa dei metodi
  • Dai un’occhiata all’app di esempio per l’uso avanzato
  • Vedi il tutorial per esempi di implementazione completa